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Random-walk simulations of NMR dephasing effects due to uniform magnetic-field
gradients in a pore
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A random-walk simulation program was developed to study the effect of dephasing spins in a uniform
magnetic-field gradient in a porous material. It is shown that this simulation program correctly reproduces
basic nuclear magnetic resonance behavior, such as the formation of a spin echo. The spin-echo decay due to
dephasing in a nonrestricted medium gives the well-known exponential relation containing the cube of time,
whereas the spin-echo decay due to dephasing in a porous material gives a monoexponential decay. By varying
the pore size and magnetic-field gradient, the motional averaging regime and the localization regime can be
simulated. Moreover, the unknown intermediate regime is investigated. By choosing the right scaling param-
eters, the spin-echo decay due to dephasing in a pore can be described by one master curve for all pore sizes
and gradient strengths. This master curve reveals a small intermediate regime, perfectly symmetrical around
the gradient for which the dephasing length is exactly equal to the structural length of the pore.
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[. INTRODUCTION The first measurements of dephasing in a restricted geom-
etry were done by Wayne and Cofts0] in 1966. In the

The field of nuclear magnetic resonari®MR) in porous  subsequent paper, Robertsptil] provided the theoretical
materials is very broad. All kinds of porous materials haveframework to explain the experimental results. One decade
already been studied with NMR. The most popular class ofater, Neumarj12] derived the same results for a restricted
materials are biological tissues. Also rodkd and building ~9eometry by a different method, which shows resemblance
materials such as concrdi] and wood are imaged by a lot With the random-walk method. _
of groups. One of the main research topics of our group is. Recently, Swiet and Sefl3] reconsidered the Bloch-
the moisture transport through porous building materials. ATO"ey €quation and found two asymptotic situations. The
building material, difficult to investigate with NMR, is fired- aSSumption of small phase accumulatioes., dephasing of

clay brick[3]. Because of the high iron content in this ma- water in a silica gelleads to the results of Douglass and

terial, the internal magnetic field is very inhomogeneous ancli\/lcca.”’ and Neumann._The assumption of Igrge phase accu-
mulations(e.g., dephasing of water in a building material

the inhomogeneities are relatively large compared to, for ex; ives a solution for both the free-diffusion and the restricted-

?‘mp'e’ bIOIOQICE.ll tl'ssues. We haye measured the resultlngif‘fusion situation. Hdimann[14] gave an overview of all
internal magnetic-field gradients in both the base producf,e ifferent regimes that can be attributed to dephasing in a
clay [4] and in the end product fired-clay brid]. The  congtant magnetic-field gradient, depending on diffusion
major consequence of those high internal gradients is thgme pore size, and gradient strength. Although the equations
large enhancement of the dephasing of the spins. Thereforgescrining the asymptotic situation are clear, and also the
the transverse magnetization decays much faster in thosgutions for these limiting situations are known, there exists
type of materials than in materials with a comparable poreyn intermediate regime with an unknown magnetization de-
size but without magnetic impurities. cay. In order to get a better understanding of all these re-
The importance of diffusion for the dephasing behavior ofgimes, including the intermediate regime, we developed a
the magnetic spin moments was already realized by Hahn isimple random-walk simulation model accounting for phase
his classical paper on spin echd€$. He left it as an exer- accumulation.
cise to the reader to see that dephasing in a constant In Sec. Il, the NMR dephasing theory will be presented
magnetic-field gradient will lead to an exponential decay,including the asymptotic solutions of the Bloch-Torrey equa-
cubic in time. A few years later, Carr and Purdél) gave the tion. In Sec. IIl, the simulation method is explained. Section
solution using random walks. They also proposed a puls¢/ A contains the numerical details of the simulation. The
sequence that compensates largely for dephasing due to difiodel is checked by simulating the free-diffusion situation in
fusion; it is called the Carr-Purcell-Meiboom-Gill pulse se- Sec. IV B. More interesting are the simulations of restricted
guence. In 1956, Torrey extended the Bloch equation withdiffusion. The model system consists of a spherical pore with
the diffusion term, giving the Bloch-Torrey equatid8]. a homogeneous magnetic-field gradient, where pore size and
Douglass and McCal[l9] solved this equation and found the magnetic-field gradient strength are varied. The spin-echo
same solution as Hahn for the free-diffusion situation. decay in the various asymptotic regimes will be simulated
and compared to the analytically derived results. Our major
question: How the spin-echo decays in the intermediate re-
*FAX: ++31 40 2432598. gime will be addressed in Sec. IV C. The last Sec. V contains
Email address: R.M.E.Valckenborg@tue.nl the conclusion and discussion.
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. . . . M(tE):MOeX - = tE
The simulation program is written to get a better under- 6 D
standing of the dephasing and rephasing behavior of an en- 2 4
; _ cllp\?fls
semble of transverse magnetic moments. Therefore, the lon —Meaexp — —| 2] |2 ()
gitudinal component will not be considered. The transverse 0 6l1g) Vg )’

magnetic moment is subject to an exponential decay with . . ) )
time constantr,. The total frequency of events leading to Wherels is the plate distance. This has been confirmed by
decay (1T,) is the sum of relaxation events {h/s) and experlments{l(_)]. The abpve resglt will hold for.all kinds of
dephasing events (T4 gepnack: When no correlation between pore geometries but wlth a dlffere_nt numer_lcal prefactor
these effects exists. Although this is subject of current rel12]. Our main interest |sgthe spherical pore, in which case
search{5], it is common practice to split the total transversethe geometrical factoc= 75 [12].
decay in a relaxation part and a dephasing part. In this paper |f the dephasing lengthy is shorter than the structural
we only consider the dephasing part. lengthls and the diffusion lengtlhy , the magnetization de-
First, the magnitude of the Hahn spin echo will be givencay is in the so-called localization regime This happens if the
for an infinite system in which the particles and hence thenagnetic-field gradient is very strong and the particle has
spins can diffuse freely. The magnetic-field variation is lim-alréady dephased significantly, before it can hit a pore wall.
ited to the situation of a constant magnetic-field gradgnt Swiet and Seii13] have shown for spins restricted between

The transverse magnetic momévitis described by6] two parallel plates
1 3 M(tg)=M cl—gex —ﬂ(yg)mDmt
M(tg)=Moexp{— #(v9)°D tg}, () E "lg 12 E
lg a; (1p\?
where My is the equilibrium magnetizationig is the spin- =M00Eex 1200 [ ®)
echo time, which is equal to exactly two times the interpulse g
time, D is the self-diffusion coefficient, angt is the gyro-  wherea;=1.02. .. is thefirst zero of the derivative of the
magnetic ratio §=2.67<10® rad/Ts for *H). If the par-  Airy function andc=5.88 ... . Theprefactor reflects the

ticles are restricted by a porous material, they cannot diffuséraction of the spins that are contributing to the signal. Also
freely anymore. Therefore, the dephasing part of the spitior this regime other geometries will give other numerical
echo will deviate from the above result. To describe theprefactors. Hdimann [15] gave it the name “localization
dephasing behavior for the restricted-diffusion situation,regime,” because the magnetization is not homogeneous in
three length scales have to be compared. The first is thghe pore. In parts of the pore with a strong magnetic-field

diffusion length gradient, the decay will be fast. An accumulation of magne-
tization will occur at places where the magnetization decay is

small. These are regions with a relatively low magnetic-field

lp=6DtE, 2 gradient or regions with restricted diffusion in the neighbor-

hood of the pore wall. Hence, in the case of a uniform

which is the mean distance a particle can travel during timénagnetic-field gradient, only the restriction of the pore wall

tg if it is not hindered. The second length scale is the poreg'ves IOW. magnetizatioq decay. This effect is also observed
size or structural lengthg, which can also be written as the In NMR imaging experiments and called "edge enhance-

volume of the pore divided by the surface area of the porénent" [16].
VIS. For example, a spherical pore has a structural length
that is equal to one-third of the radius of the pore. The third IIl. SIMULATION METHOD

length scale is the dephasing length A. Model system

We consider a porous sample with an arbitrary geometry
D\ in the directions perpendicular to the magnetic-field gradient
(%) ' (3 and with a finite sizeL in the z direction parallel to the
magnetic-field gradient. We assume that this porous sample
consists ofN randomly distributed identical pores with a
which is the distance a particle must travel, to dephase byolumeV and a surface area The pores are not connected,
one full cycle (2r) in the magnetic-field gradient. but are all isolated. Below, it will be shown that in this sys-
If the structural length 5 is shorter than the dephasing tem only the dephasing effect of one single pore is needed in
lengthly and the diffusion lengthg , the magnetization de- the simulations. Of course only thtH nuclei of the water
cay is in the so-called motional averaging regime. In thatmolecules in the completely water-saturated pores are con-
case, the particles probe all parts of the pore. They averagedered. We assume that one pore cont&irspin moments
their local magnetic field by their diffusive motion. The mag- moving via Brownian motion. We neglect magnetic suscep-
netization of water between two parallel reflecting plates detibility differences between the water filled pore space and
cays according t¢11] the pore matrix material. Therefore, also inside the pore, the

lg=
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magnetic-field gradient is taken perfectly constant. It haslemodulated with the Larmor frequency corresponding to
been showr7] that only thez component of this magnetic B, and hence there will be no phase accumulation from this
field is important when the magnitude of the magnetic-fieldcontribution.

variations is much smaller than the main magnetic field. The second term at the r.h.s. of E§0) can be solved
Therefore in the simulations, the other magnetic-field com-analytically. To this end a spatial pore distribution function

ponents will not be considered. P(z) is introduced, which is normalized as follows:
. . L2
B. Free induction decay f P(z)dz=N. (12)
—L/2

The spins start with maximum transverse magnetization
and zero phase at the beginning of the simulation. Thi
means that at=0, the 90° pulse just flipped the spin mo-
ment of all particles into the transverse plane. The magnitude
and the phase of the magnetizatibh which can be mea- L2
sured in an experiment by sampling the free induction decay f P(z)exp(iygzt)dz (12
(FID), is the ensemble averaged spin moment of all particles 2

SWith this function, the summation over all pores can be re-
written to an integral

N K This integral can be solved for a given distribution of pores
> > explie), (6)  within the sample. A uniform pore distributioR(z) =N/L
n=1k=1 gives the following in the absence of diffusion:

Z| -
X~

M = M{exp(i ¢))=

where the superscrigt runs over all particleK and the 2N (1 ) 13
sin

subscriptn runs over all poresN. If the phaseek of all M= YLt 7 79Lt
particles is known, also the resulting magnetization is known
and can be compared with experimental data. The Larmowhich is the well-known sinc function, describing the enve-
frequency of each particle is equal to the magnetic fieldope of the FID of a homogeneous, finite sample in the pres-
times the gyromagnetic ratig. Hence the phase of each ence of a constant magnetic-field gradient.
particle is equal to the time integral of this product The third term at the r.h.s. of E¢L0) gives the contribu-
tion of the diffusing particles in the local field of one pore.
. ‘ This term cannot be simplified analytically, because it con-

@n= YJOB(Zn(T))dT: (7) " tains the time integral over the phase accumulation during a
random walk. Therefore a simulation is needed to evaluate
this term for all random paths of all particles. In the simula-
tion model, these random walks are generated for various
pore sizes and gradient strengthswhich influence the ac-
K K cumulated phase. The fastest way to simulate a random mo-
B(z,(1))=Bo+gz(1), ®  tion is by a discrete hopping of particles. This implies that

the time integral is divided intd discrete time stepA 7 (t

where B, is the main magnetic field and is the constant =JjA7), in which the particles can jump randomly from one
magnetic-field gradient strength. Because all pores are 'deﬁbosnmn to another

tical, the possible positions of a spin with respect to the

whereB(z") is the magnetic field at the positiari of par-
ticle k inside poren, that can be written as

center of the pore are identical in all pores. Therefore, the t o
magnetic field can be split into three contributions fozk( T)dT:ATJEl z}‘. (14
B(zp(1)=Bo+ gz +gZ(t), ©) _
C. Spin echo
whereZ¥ is the position of spirk with respect to the center ~ In a spin-echo experiment, a 180° pulse is applied to the
Zyo Of pore n. Substitution of this expression into E66) system at a certain time=JA 7 and the signal at timet2is
gives the following product: called the spin echo. The phase evolution after the 180°
pulse is often referred to as rephasing. For stationary spins
1 N one can imagine that the accumulated phase is inverted and
M=M,gexp(i YBot)N 21 exp(i ygzyot) accumulates again to exactly zero at the spin-echo time. For
A=

diffusion processes, this rephasing is not complete, because
1 K . the spins do not follow the same trajectory as before the
= 2 F{i,ygf"z‘k( rydr (10) 180° pulse.
K k= 0 The magnetization of a spin echo can be calculated in the
same way as for the FI[EQ. (10)]. Again the contribution of
The first term at the right-hand side of E(.0) gives the the main magnetic field is zero. The contribution of the
contribution of the main magnetic field to the total phase. Indephasing effect of all the different pores can be calculated
a normal FID or spin-echo experiment the NMR signal isanalytically. For a constant magnetic-field gradient this con-
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tribution is zero. This is not surprising, because it is com-wheren is the number of simulation steps, ahd the dis-
monly known that a 180° pulse refocuses all dephasing eftance between two neighboring lattice points or the distance
fects due to static magnetic field inhomogeneities. Howevemf a random step when simulating without a lattice. So in
the dephasing described by the third term at the r.h.s. of Eqhree dimensions, during a simulation time stepa particle

(10) is not canceled by the 180° pulse, but gives the extra&an move to one of its six neighboring lattice points at dis-
attenuation of the spin echo due to diffusion effects. Thetancel. To simulate Brownian motion, Eq17) has to be
phase of the particles in the pore can be written as equal to Eq(18). The diffusion timet is equal to the product

of the time of one simulation stepr and the total number of

2t t . . . . .
k_ =k =k simulation steps. In the simulation, the time step, therefore,
= z -1z . 1 )
$n=7d Jt (r)dr fo (r)d7 (19 has the following value:
2
Also this time integral of the diffusion process is converted Ar= I . (19)
to a series of discrete hopping steps 2dD
2J J
~ ~ IV. RESULTS
en=7981 X 7= Z;k} (16) . . . .
j=J+1 j=1 First, some numerical aspects will be considered. Next,

the simulation model is checked with the case of free diffu-

Now only the path of the randomly moving spins has to besion. Finally, the simulation is used to calculate the spin-echo
simulated to obtain the magnetization of the spin echo.  decay in a restricted geometry. The asymptotic solutions of
the motional averaging and the localization regime are cal-
D. Random walk culated and presented in one master curve. This figure can

ive an answer to the question: How is the dephasing in the

For computational reasons, we have chosen to generafgiormediate regime?

random walks on a discrete lattice. On a lattice, a particle
only has to be moved randomly from one node to another,
which can be done numerically with some very fast bit shifts.
Continuous random walks, on the other hand, use randomly Because of our main interest in moisture transport in po-
chosen radii and angles, which require inefficient cosine antdous building materials, we take water as fluid, for which

A. Numerical aspects

sine instructions. D=2.5x10"° m?/s. Of course our lattice is finite. We can
The mean squared displaceméRt) of Brownian motion ~ simulate all three dimensions with a typical lattice size vary-
is given by ing between 100 nm and 10@m, cubic. For simulation
reasons, one would describe a free-diffusion situation with
(R?)=2dDt, (17 periodic boundary conditions. This means that a particle that

leaves the lattice through a certain boundary, will enter the
wheret is the diffusion timeD is the self-diffusion coeffi- |attice through the opposite boundary. However, in our simu-

cient, andd is the number of dimensions. lation this is not possible, because the dephasing at, for in-
The mean squared displaceméR®) of a random walk stance, the left boundary can be very distinct from the
on a simple cubic lattice is given by dephasing at the right boundary. Therefore, we have put per-
fectly absorbing walls at the boundary of our lattice. So, if a
(R¥)=n?, (18)  particle hits this wall it will be removed from the simulation.
1.0x10™°
10000 8.0x10™"
“E 6.0x10™
8000 4 N>I: 4.0x10™
v -14
.i§ = FIG. 1. Y component of the simulated particle
£ 6000 O et 1000 TEne" 2one® distribution at various times. Solid squares are
e Time (s) points from the simulation. The solid curves are
; the result of fitting a Gaussian function to the
g 4000 data. Att=0, all particles are in the middle of the
3 lattice. The inset shows the mean squared dis-
placement of the particles as a function of time.
2000 -
04

0 20 40 60 80 100
Position (grid number)
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For the simulations of free diffusion, in the beginning all 80000 -
particles are put in the middle of the lattice and it is checked 70000
that at the echo time only a small fraction of the particles is __ soooo|
removed by this mechanism to be sure that it has only a’% 50000
minor influence on the results. For the simulations of a g 400004
spherical pore, there is no problem because the particles cag 30000 FID
never reach the lattice boundary. The pore wall perfectly re-g 200004 .~

1zal

flects the particles. T 40000

The typical number of lattice points is 18A@.00x 100. So § ol
| varies between 1 nm and Lm, giving a simulation time 10000
stepA 7 varying between 10'° s and 10* s. The smallest o000 b , , ,
echo time that can be measured experimentally by our NMR 0000 0.002 0.004 1 £.006 0.008 0010 0.012
scanners is about 10@s [17]. This time is reached in the 90° pulse 180° pulse ‘L

simulations very quickly(for the worst case situation of a
cubic 100 nm lattice, in 10diffusion steps The longest
time we consider in our simulations is 10 s, because at that FIG. 2. The solid lines show the simulated transverse magneti-
time the normal bulk relaxation time of water will have de- zation during a spin-echo experiment in the case of free diffusion.
cayed the spin-echo intensity to a level below the noise, prefhe 90° and 180° pulses are givertat0 and att=5 ms, respec-
venting further study of the dephasing behavior. This maytively. The dotted line shows the dephasing due to free diffusion.

result In-a very t'm_e consuming simulatigfor the worst There is no bulk relaxation mechanism in this simulation
case situation up til 18 diffusion steps The number of 54 there are no walls in the case of free diffusion. Hence,
particles is typicallyK=10000, which appears to give a the spins cannot relax by those mechanisms, but they do
signal-to-noise ratio o8/N=100. For some simulations, the dephase. As already mentioned in Sec. II, the spin-echo de-
noise level had to be decreased, in which ddsel®® was cay due to dephasing can be described by (Ex.

taken. Figure 3 shows the spin-echo intensity as a function of
time for a gradient of 10 T/m. The solid curve in this graph is
a fit to Eq. (1), which gives a gradient of (9:80.1) T/m.

The particles should perform a Brownian random waIkThe small deviation from the gradient strength used in the

hen th I dt freely in the lati Tsimulation is caused by the absorbing walls at the boundary
when they are allowed 1o move Ireely In the 1atlice Space. 1Qy the |attice. As mentioned above, particles that diffuse out

demonstrate this, all particles are put in the middle of the the Jattice space are removed from the simulation, whereas
lattice att=0. This is allowed, since there is no interaction in a real experiment partic]es that diffuse out of the NMR
between the particles themselves. The total lattice length isensitive region can diffuse back after a while and contribute
setto 3 um. to the signal.

They component of the spatial distribution of the freely
moving spins at certain times is shown in Fig. 1. The curves C. Restricted diffusion
are fits of a Gaussian function through the data points at The spins will dephase slower in a restricted geometry
various times. As can be seen, the particles spread Gaussiahan in the case of free diffusion. For restricted diffusion, the
as expected. In the inset of Fig. 1, the mean squared displace-
ment in they direction is shown as a function of time. The
simulated results were found to agree with the mean square:
displacement given by Eq18). Therefore it can be con-
cluded that the particles in the lattice space of the simulation
behave Brownian. This check was also performed forxhe
andz components.

The summation of all spins has to give a FID after the 90°
pulse. Also a spin echo has to appeatgat Both effects are
demonstrated in Fig. 2. At=0 the 90° pulse is given and at
t=5 ms the 180° pulse is given. The spin echo appearsc
nicely att.=10 ms. To obtain this picture, also the second &
term at the r.h.s. of Eq10) was taken into account, because
this causes the modulation of both the FID and the spin echc 09 y T " T " '
[cf. Eq. (13)]. The dotted line shows the dephasing due to 0:0000 0:0009 0.0019 oot 0.0020
diffusion predicted from theory that is only valid at spin- Time (s)
echo timetg . If we define the magnetization & as the FIG. 3. The spin-echo intensity as a function of time for a con-
spin-echo intensity, as usual, this intensity can be evaluategtant magnetic-field gradient of 10 T/m. The solid circles are simu-
as a function of spin-echo time for all kinds of geometrieslated spin-echo intensities, the line is a fit of the free-diffusion equa-
and magnetic fields. tion.

Time (s)

B. Free diffusion

i}

)

Echo Intensity (arb. units
°
T
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FIG. 4. The spin-echo intensity as a function of time for a pore  FIG. 5. The simulated spin-echo decay rate due to dephasing for
size ofls=0.3 um and a uniform gradierg=10 T/m; and for a  various pore sizes as a function of the gradient field. The solid and
pore size oflg=3.3 um and a uniform gradient aj=0.3 T/m. dashed lines with slope 2 are the analytical solutions for the mo-

tional averaging regime. The dotted line with slope 2/3 shows the

2/3 ; i ati ;
diffusion length has to be larger than either the structuraP behavior for the localization regime.

length or the dephasing length. As discussed in Sec. Il, there
can be two different situations. If the dephasing length isfactor of 1.31 §*(T/m)~?, agrees nicely with the simula-
smaller than the structural length, the particles are in thdion results (1.340.07) s *(T/m)~2. The dotted straight
localization regime. If the dephasing length is larger than thdine with slope 2/3 is a guide to the eye for the localization
structural length, the particles are in the motional averagingegime[cf. Eq. (5)]. For this regime the exact solution for a
regime. The spin-echo decay in both regimes is monoexpcspherical pore is unknown. The exact solution for spins con-
nential, but with a different decay raf&q. (4) and(5)]. fined between two parallel plat¢$3] has a numerical pref-

In Fig. 4 two examples of simulations of the spin-echoactor in the exponent of 1.02f. Eq. (5)], whereas we find
decay in a restricted geometry are given. The first correfor our spherical pores a prefactor of 1.6.
sponds to a pore size of 0.am and a gradient strength of Reconsider the theory of the two asymptotic regimes. For
10 T/m. The transition from free-diffusion behavior to a pore sizd s=0.3 wm, the dephasing length is equalltp
restricted-diffusion behavior will occur when the diffusion at a gradient of 252 T/mEgq. (3)]. For all gradient strengths
length becomes of the order of the pore size. The diffusiorsmaller than this value, the dephasing length is larger than
length is 0.3 um, att=44 us, for Brownian motion[cf.  the structural length. Therefore the motional averaging re-
Eq.(17)], i.e., before the first spin echo is created. Thereforegime should be applicable for all gradients smaller than
all the spin echoes in this experiment will correspond to theabout 250 T/m. This is in agreement with the observation in
restricted-diffusion regime. This is in agreement with theFig. 5 that all simulated gradient strengths correspond to the
data in Fig. 4, because no transition can be seen and a perfgoptional averaging regime. For a pore slze=1 pm, the
monoexponential decay is observed. When a larger pore idephasing length is also km, at a gradient of 9.3 T/m.
simulated, this transition from free diffusion to restricted dif- Therefore a transition from the motional averaging regime
fusion becomes visible. For example, the second simulatioimto the localization regime is expected around this gradient
reflects a pore size of 3.2um and a gradient strength of 0.3 strength. In Fig. 5 it can be seen, that this transition indeed
T/m. In that case the diffusion length equals the pore size apccurs at about 10 T/m. For pore sitg=3.3 um, the
t=4.4 ms, which is in agreement with the observation indephasing length is also 3.am, at a gradient of 0.3 T/m.
Fig. 4. The decay in the restricted-diffusion regime after thisTherefore, the spin-echo decay should be described by the
transition time is monoexponential. A fit of such a decay tolocalization regime for all used gradient strengths, except the
the data is shown in the figure by a straight line. simulations for which g=0.1 T/m and perhapsg

The spin-echo decay has been simulated not only fo=0.3 T/m as is indeed shown by the corresponding data in
these two examples, but for various gradient stren@tbace  Fig. 5. In conclusion, the results of the simulations reveal a
giving various dephasing lengthand for various pore sizes. transition from the motional averaging regime into the local-
In Fig. 5 the decay rat&esulting from a monoexponential fit ization regime, which is in agreement with the theoretical
to the data after the transition timis plotted as a function of transition point als=I4. We elucidate this point later on.
gradient strength. The two straight lines with slope 2 reflect Pore sizes smaller than 0.8m will be described com-
predictions for the motional averaging regife. Eq. (4)].  pletely by the motional averaging regime. Simulating these
The slope of the fit to the simulation results for the Qu3n  pores becomes time consuming, because the decay rate de-
pore (1.98-0.02) is in perfect agreement with the thepefi. ~ creaseswhich implies a longer simulation timend also the
Eq. (4)]. One should note, that also the geometrical factor asime step for hopping to another lattice point decreases, as
calculated by Neumafl2] for a spherical pore, yielding a can be seen in E419) (which implies that more time steps
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oo A—a numerical prefactor of about 1.6 in terms of known theoret-
: ical models. The slope of the line of the motional averaging
regime is in perfect agreement with the theory, as already
mentioned above. With this scaled figure, the transition from
the motional averaging regime to the localization regime can
be accurately identified. The dashed line$;at0.7 4 and at
votonal | Transition scatvation Is'zl'.4lg define this transmon. area. It should be noticed that
Averaging i MOtAVg=> i Regime this is exactly around the poitt=1g4, which is commonly
Regime  Localization : assumed in literaturgl4]. It should also be noticed that the
i width of the intermediate regime can be understood. Swiet
e AN and Ser{13] made the Bloch-Torrey equation dimensionless
s~ 071, Dlg- 141 and showed that the solution of the resulting differential
: equation is governed by the value ¢g(|g)3. This differen-
00 0 P PR PO L PR tial equation goes from the one asymptotic solution to the
other asymptotic solution iflgllg)3 varies over one order of
magnitude. This means thét/l; only has to vary over a

FIG. 6. The scaled decay rate due to dephasing as a function dfctor of abouﬁ/l—o_“Z which is in agreement with our ob-
the scaled parametefg(l)*. servation of the width of the intermediate regime.

l=0.3 um
|S=1 wm
lg= 3.3 um

> e

Scaled dephasing rate
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. . . V. DISCUSSION AND CONCLUSIONS
are needed for the same simulation tjmieore sizes larger

than 3.3 um will be described completely by the localiza- It is shown that a numerical simulation of the behavior of
tion regime. For these pore sizes, however, the transitiothe spins in a fluid in multiple identical spherical pores
from free diffusion to localization occurs so late in time, thatnicely reproduces a FID and a spin echo. It is also shown that
the spin-echo signal has already decayed to a very low levethe simulated random motion of the spins will give Brownian
Simulating these relaxivities is possible but do not give usemotion with the correct value of the self-diffusion coeffi-
ful results, because in a normal spin-echo experiment theient. The simulated NMR spin-echo decay due to dephasing
signal-to-noise level will always be on the order of 1000, atin a constant magnetic-field gradient for a large enough lat-
best. tice space gives the well-known free-diffusion spin-echo de-
The analytical solutions for the motional averaging re-cay function[Eq. (1)]. The presence of walls in the simula-
gime and the localization regime are only asymptotic solu+ion lattice space transforms this free-diffusion result into the
tions of the Bloch-Torrey equation. The situation in betweerrestricted-diffusion result, which is known to be monoexpo-
these asymptotic situations is called the intermediate regimeential. All these results confirm that our simulation model is
[14], in which the spin-echo decay is unknown. The resultcorrectly reproducing real NMR behavior and therefore suit-
from our simulations show that with increasing gradientable to investigate unknown situations.
strength, the transition from the motional averaging regime For a pore with a typical pore size of 0.@m, the
into the localization regime is smooth. It is clearly visible in dephasing is described by the motional averaging regime.
Fig. 5 forIs=1 um that the spin-echo decay transforms For a pore with a typical pore size of 3,@m, the dephasing
smoothly from theg?® behavior of the localization regime is described by the localization regime. Both asymptotic situ-
into the g? behavior of the motional averaging regime. ations were already predicted in the literat[td]. However,
Figure 5 suggests that the decay due to dephasing in tee intermediate situation was unknown. The simulations
localization regime is identical for all pore sizes. This obser-presented in this paper describe this intermediate regime.
vation is not surprising because the localization regime isMoreover, all simulated decay rates due to dephasing can be
characterized by the fact that the spins are already dephasedaled on one master curve, which gives the complete solu-
before reaching the pore wall, given a certain constant gration of the problem of a uniform gradient in a spherical pore.
dient. Therefore, the simulated dephasing decay rate can gom this master curve it is clearly visible that the transition
scaled by dividing it by the theoretical decay rate of thefrom the motional averaging regime into the localization re-
localization regime. The decay rate of the motional averaggime occurs at the gradient strength for which the dephasing
ing regime, on the other hand, depends on both pore size anength is equal to the pore sizé;E1g). It can also be con-
dephasing length in a known wgf. Eq. (4)]. Therefore the cluded that the transition extends over an intermediate re-
gradient strength can be scaled by transforming it to the varigime for about 0.%1s/14<1.4.
able QS/I9)4. Figure 6 clearly indicates that the scaled decay In our opinion, the description of clays and fired-clay
due to dephasing as a function of the fourth power of porddricks may require an extension of the model, introduced in
size divided by dephasing length gives one master curve fahis paper. The solid matrix of the porous material has a
all simulated pore sizeks and gradient strengthg, which  susceptibility different from the water or air in the pores.
are incorporated in the dephasing lengjh This susceptibility mismatch leads to additional magnetic-
The maximum scaled dephasing raterizontal line in  field gradients[18]. The extent to which the susceptibility
Fig. 6) is the dephasing rate corresponding to the localizationmismatch affects the magnetic field inside the bulk matrix or
regime. As mentioned above, we are unable to explain tha pore strongly depends on the geometry of the safiiisle
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Only ellipsoidally shaped objects will have a uniform mag- prete the magnetization decay in more complex situations.
netic field inside when placed in a homogeneous field. OtheThe simulation program can also be used to calculate the
geometries lead to nonuniform magnetic fields and, conseransverse relaxation in a restricted geometryi5 the nu-
quently, gradients. Especially sharp corners and wedges witherical results of the combined effects of relaxation and
give large local magnetic-field gradierj@0]. Therefore, we  dephasing will be presented.

are currently simulating other pore geometries and more
complex magnetic-field distributions, i.e., a summation of
dipolar fields that are generated by small iron particles. Pre-
liminary results indicate that the effect of these magnetic
impurities may be very important. Because from the present The authors wish to thank L. Pel and M. T. Vlaardinger-
study the intermediate regime in the simple model systentroek for stimulating discussions. This project was finan-
with a constant gradient is known, it will be easier to inter-cially supported by the Dutch Technology Foundation.
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