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Random-walk simulations of NMR dephasing effects due to uniform magnetic-field
gradients in a pore

R. M. E. Valckenborg,* H. P. Huinink, J. J. v. d. Sande, and K. Kopinga
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherland

~Received 1 July 2001; published 24 January 2002!

A random-walk simulation program was developed to study the effect of dephasing spins in a uniform
magnetic-field gradient in a porous material. It is shown that this simulation program correctly reproduces
basic nuclear magnetic resonance behavior, such as the formation of a spin echo. The spin-echo decay due to
dephasing in a nonrestricted medium gives the well-known exponential relation containing the cube of time,
whereas the spin-echo decay due to dephasing in a porous material gives a monoexponential decay. By varying
the pore size and magnetic-field gradient, the motional averaging regime and the localization regime can be
simulated. Moreover, the unknown intermediate regime is investigated. By choosing the right scaling param-
eters, the spin-echo decay due to dephasing in a pore can be described by one master curve for all pore sizes
and gradient strengths. This master curve reveals a small intermediate regime, perfectly symmetrical around
the gradient for which the dephasing length is exactly equal to the structural length of the pore.

DOI: 10.1103/PhysRevE.65.021306 PACS number~s!: 81.05.Rm, 05.40.Fb, 76.60.2k, 78.55.Mb
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I. INTRODUCTION

The field of nuclear magnetic resonance~NMR! in porous
materials is very broad. All kinds of porous materials ha
already been studied with NMR. The most popular class
materials are biological tissues. Also rocks@1# and building
materials such as concrete@2# and wood are imaged by a lo
of groups. One of the main research topics of our group
the moisture transport through porous building materials
building material, difficult to investigate with NMR, is fired
clay brick @3#. Because of the high iron content in this m
terial, the internal magnetic field is very inhomogeneous a
the inhomogeneities are relatively large compared to, for
ample, biological tissues. We have measured the resu
internal magnetic-field gradients in both the base prod
clay @4# and in the end product fired-clay brick@5#. The
major consequence of those high internal gradients is
large enhancement of the dephasing of the spins. There
the transverse magnetization decays much faster in th
type of materials than in materials with a comparable p
size but without magnetic impurities.

The importance of diffusion for the dephasing behavior
the magnetic spin moments was already realized by Hah
his classical paper on spin echoes@6#. He left it as an exer-
cise to the reader to see that dephasing in a cons
magnetic-field gradient will lead to an exponential dec
cubic in time. A few years later, Carr and Purcell@7# gave the
solution using random walks. They also proposed a pu
sequence that compensates largely for dephasing due to
fusion; it is called the Carr-Purcell-Meiboom-Gill pulse s
quence. In 1956, Torrey extended the Bloch equation w
the diffusion term, giving the Bloch-Torrey equation@8#.
Douglass and McCall@9# solved this equation and found th
same solution as Hahn for the free-diffusion situation.
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Email address: R.M.E.Valckenborg@tue.nl
1063-651X/2002/65~2!/021306~8!/$20.00 65 0213
e
f

is
A

d
x-
g

ct

e
re,
se
e

f
in

nt
,

e
if-

h

The first measurements of dephasing in a restricted ge
etry were done by Wayne and Cotts@10# in 1966. In the
subsequent paper, Robertson@11# provided the theoretica
framework to explain the experimental results. One dec
later, Neuman@12# derived the same results for a restrict
geometry by a different method, which shows resembla
with the random-walk method.

Recently, Swiet and Sen@13# reconsidered the Bloch
Torrey equation and found two asymptotic situations. T
assumption of small phase accumulations~e.g., dephasing of
water in a silica gel! leads to the results of Douglass an
McCall, and Neumann. The assumption of large phase a
mulations~e.g., dephasing of water in a building materia!
gives a solution for both the free-diffusion and the restricte
diffusion situation. Hu¨rlimann @14# gave an overview of all
the different regimes that can be attributed to dephasing
constant magnetic-field gradient, depending on diffus
time, pore size, and gradient strength. Although the equat
describing the asymptotic situation are clear, and also
solutions for these limiting situations are known, there exi
an intermediate regime with an unknown magnetization
cay. In order to get a better understanding of all these
gimes, including the intermediate regime, we develope
simple random-walk simulation model accounting for pha
accumulation.

In Sec. II, the NMR dephasing theory will be present
including the asymptotic solutions of the Bloch-Torrey equ
tion. In Sec. III, the simulation method is explained. Secti
IV A contains the numerical details of the simulation. Th
model is checked by simulating the free-diffusion situation
Sec. IV B. More interesting are the simulations of restrict
diffusion. The model system consists of a spherical pore w
a homogeneous magnetic-field gradient, where pore size
magnetic-field gradient strength are varied. The spin-e
decay in the various asymptotic regimes will be simula
and compared to the analytically derived results. Our ma
question: How the spin-echo decays in the intermediate
gime will be addressed in Sec. IV C. The last Sec. V conta
the conclusion and discussion.
©2002 The American Physical Society06-1
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II. NMR

The simulation program is written to get a better und
standing of the dephasing and rephasing behavior of an
semble of transverse magnetic moments. Therefore, the
gitudinal component will not be considered. The transve
magnetic moment is subject to an exponential decay w
time constantT2. The total frequency of events leading
decay (1/T2) is the sum of relaxation events (1/T2,relax) and
dephasing events (1/T2,dephase), when no correlation betwee
these effects exists. Although this is subject of current
search@5#, it is common practice to split the total transver
decay in a relaxation part and a dephasing part. In this pa
we only consider the dephasing part.

First, the magnitude of the Hahn spin echo will be giv
for an infinite system in which the particles and hence
spins can diffuse freely. The magnetic-field variation is lim
ited to the situation of a constant magnetic-field gradieng.
The transverse magnetic momentM is described by@6#

M ~ tE!5M0 exp$2 1
12 ~gg!2D tE

3%, ~1!

whereM0 is the equilibrium magnetization,tE is the spin-
echo time, which is equal to exactly two times the interpu
time, D is the self-diffusion coefficient, andg is the gyro-
magnetic ratio (g52.673108 rad/Ts for 1H). If the par-
ticles are restricted by a porous material, they cannot diff
freely anymore. Therefore, the dephasing part of the s
echo will deviate from the above result. To describe
dephasing behavior for the restricted-diffusion situatio
three length scales have to be compared. The first is
diffusion length

l D5A6DtE, ~2!

which is the mean distance a particle can travel during t
tE if it is not hindered. The second length scale is the p
size or structural lengthl S , which can also be written as th
volume of the pore divided by the surface area of the p
V/S. For example, a spherical pore has a structural len
that is equal to one-third of the radius of the pore. The th
length scale is the dephasing length

l g5S D

ggD 1/3

, ~3!

which is the distance a particle must travel, to dephase
one full cycle (2p) in the magnetic-field gradient.

If the structural lengthl S is shorter than the dephasin
length l g and the diffusion lengthl D , the magnetization de
cay is in the so-called motional averaging regime. In t
case, the particles probe all parts of the pore. They ave
their local magnetic field by their diffusive motion. The ma
netization of water between two parallel reflecting plates
cays according to@11#
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M ~ tE!5M0 expH 2
c

6

~gg!2l S
4

D
tEJ

5M0 expH 2
c

6 S l D

l g
D 2S l S

l g
D 4J , ~4!

where l S is the plate distance. This has been confirmed
experiments@10#. The above result will hold for all kinds o
pore geometries but with a different numerical prefac
@12#. Our main interest is the spherical pore, in which ca
the geometrical factorc5 8

175 @12#.
If the dephasing lengthl g is shorter than the structura

length l S and the diffusion lengthl D , the magnetization de
cay is in the so-called localization regime This happens if
magnetic-field gradient is very strong and the particle h
already dephased significantly, before it can hit a pore w
Swiet and Sen@13# have shown for spins restricted betwe
two parallel plates

M ~ tE!5M0 c
l g

l S
expH 2

a1

12
~gg!2/3D1/3tEJ

5M0 c
l g

l S
expH 2

a1

12 S l D

l g
D 2J , ~5!

wherea151.02 . . . is thefirst zero of the derivative of the
Airy function and c55.88 . . . . Theprefactor reflects the
fraction of the spins that are contributing to the signal. Al
for this regime other geometries will give other numeric
prefactors. Hu¨rlimann @15# gave it the name ‘‘localization
regime,’’ because the magnetization is not homogeneou
the pore. In parts of the pore with a strong magnetic-fi
gradient, the decay will be fast. An accumulation of magn
tization will occur at places where the magnetization deca
small. These are regions with a relatively low magnetic-fie
gradient or regions with restricted diffusion in the neighbo
hood of the pore wall. Hence, in the case of a unifo
magnetic-field gradient, only the restriction of the pore w
gives low magnetization decay. This effect is also obser
in NMR imaging experiments and called ‘‘edge enhanc
ment’’ @16#.

III. SIMULATION METHOD

A. Model system

We consider a porous sample with an arbitrary geome
in the directions perpendicular to the magnetic-field gradi
and with a finite sizeL in the z direction parallel to the
magnetic-field gradient. We assume that this porous sam
consists ofN randomly distributed identical pores with
volumeV and a surface areaS. The pores are not connecte
but are all isolated. Below, it will be shown that in this sy
tem only the dephasing effect of one single pore is neede
the simulations. Of course only the1H nuclei of the water
molecules in the completely water-saturated pores are c
sidered. We assume that one pore containsK spin moments
moving via Brownian motion. We neglect magnetic susce
tibility differences between the water filled pore space a
the pore matrix material. Therefore, also inside the pore,
6-2
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RANDOM-WALK SIMULATIONS OF NMR DEPHASING . . . PHYSICAL REVIEW E65 021306
magnetic-field gradient is taken perfectly constant. It h
been shown@7# that only thez component of this magneti
field is important when the magnitude of the magnetic-fi
variations is much smaller than the main magnetic fie
Therefore in the simulations, the other magnetic-field co
ponents will not be considered.

B. Free induction decay

The spins start with maximum transverse magnetiza
and zero phase at the beginning of the simulation. T
means that att50, the 90° pulse just flipped the spin mo
ment of all particles into the transverse plane. The magnit
and the phase of the magnetizationM, which can be mea-
sured in an experiment by sampling the free induction de
~FID!, is the ensemble averaged spin moment of all partic

M5M0^exp~ iw!&[
1

N

1

K (
n51

N

(
k51

K

exp~ iwn
k!, ~6!

where the superscriptk runs over all particlesK and the
subscriptn runs over all poresN. If the phasewn

k of all
particles is known, also the resulting magnetization is kno
and can be compared with experimental data. The Lar
frequency of each particle is equal to the magnetic fi
times the gyromagnetic ratiog. Hence the phase of eac
particle is equal to the time integral of this product

wn
k5gE

0

t

B„zn
k~t!…dt, ~7!

whereB(zn
k) is the magnetic field at the positionzn

k of par-
ticle k inside poren, that can be written as

B„zn
k~ t !…5B01gzn

k~ t !, ~8!

whereB0 is the main magnetic field andg is the constant
magnetic-field gradient strength. Because all pores are id
tical, the possible positions of a spin with respect to
center of the pore are identical in all pores. Therefore,
magnetic field can be split into three contributions

B„zn
k~ t !…5B01gzn01gz̃k~ t !, ~9!

wherez̃k is the position of spink with respect to the cente
zn0 of pore n. Substitution of this expression into Eq.~6!
gives the following product:

M5M0 exp~ igB0t !
1

N (
n51

N

exp~ iggzn0t !

3
1

K (
k51

K

expF iggE
0

t

z̃k~t!dtG . ~10!

The first term at the right-hand side of Eq.~10! gives the
contribution of the main magnetic field to the total phase.
a normal FID or spin-echo experiment the NMR signal
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demodulated with the Larmor frequency corresponding
B0, and hence there will be no phase accumulation from
contribution.

The second term at the r.h.s. of Eq.~10! can be solved
analytically. To this end a spatial pore distribution functio
P(z) is introduced, which is normalized as follows:

E
2L/2

L/2

P~z!dz5N. ~11!

With this function, the summation over all pores can be
written to an integral

E
2L/2

L/2

P~z!exp~ iggzt!dz. ~12!

This integral can be solved for a given distribution of por
within the sample. A uniform pore distributionP(z)5N/L
gives the following in the absence of diffusion:

M5
2N

ggLt
sinS 1

2
ggLtD , ~13!

which is the well-known sinc function, describing the env
lope of the FID of a homogeneous, finite sample in the pr
ence of a constant magnetic-field gradient.

The third term at the r.h.s. of Eq.~10! gives the contribu-
tion of the diffusing particles in the local field of one por
This term cannot be simplified analytically, because it co
tains the time integral over the phase accumulation durin
random walk. Therefore a simulation is needed to evalu
this term for all random paths of all particles. In the simu
tion model, these random walks are generated for vari
pore sizes and gradient strengthsg, which influence the ac-
cumulated phase. The fastest way to simulate a random
tion is by a discrete hopping of particles. This implies th
the time integral is divided intoJ discrete time stepsDt (t
5JDt), in which the particles can jump randomly from on
position to another

E
0

t

z̃k~t!dt5Dt(
j 51

J

z̃j
k . ~14!

C. Spin echo

In a spin-echo experiment, a 180° pulse is applied to
system at a certain timet5JDt and the signal at time 2t is
called the spin echo. The phase evolution after the 1
pulse is often referred to as rephasing. For stationary s
one can imagine that the accumulated phase is inverted
accumulates again to exactly zero at the spin-echo time.
diffusion processes, this rephasing is not complete, beca
the spins do not follow the same trajectory as before
180° pulse.

The magnetization of a spin echo can be calculated in
same way as for the FID@Eq. ~10!#. Again the contribution of
the main magnetic field is zero. The contribution of t
dephasing effect of all the different pores can be calcula
analytically. For a constant magnetic-field gradient this co
6-3
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tribution is zero. This is not surprising, because it is co
monly known that a 180° pulse refocuses all dephasing
fects due to static magnetic field inhomogeneities. Howe
the dephasing described by the third term at the r.h.s. of
~10! is not canceled by the 180° pulse, but gives the ex
attenuation of the spin echo due to diffusion effects. T
phase of the particles in the pore can be written as

wn
k5ggF E

t

2t

z̃k~t!dt2E
0

t

z̃k~t!dtG . ~15!

Also this time integral of the diffusion process is convert
to a series of discrete hopping steps

wn
k5ggDtF (

j 5J11

2J

z̃j
k2(

j 51

J

z̃j
kG . ~16!

Now only the path of the randomly moving spins has to
simulated to obtain the magnetization of the spin echo.

D. Random walk

For computational reasons, we have chosen to gene
random walks on a discrete lattice. On a lattice, a part
only has to be moved randomly from one node to anoth
which can be done numerically with some very fast bit shi
Continuous random walks, on the other hand, use rando
chosen radii and angles, which require inefficient cosine
sine instructions.

The mean squared displacement^R2& of Brownian motion
is given by

^R2&52d D t, ~17!

where t is the diffusion time,D is the self-diffusion coeffi-
cient, andd is the number of dimensions.

The mean squared displacement^R2& of a random walk
on a simple cubic lattice is given by

^R2&5n l2, ~18!
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wheren is the number of simulation steps, andl is the dis-
tance between two neighboring lattice points or the dista
of a random step when simulating without a lattice. So
three dimensions, during a simulation time stepDt a particle
can move to one of its six neighboring lattice points at d
tance l. To simulate Brownian motion, Eq.~17! has to be
equal to Eq.~18!. The diffusion timet is equal to the produc
of the time of one simulation stepDt and the total number o
simulation stepsn. In the simulation, the time step, therefor
has the following value:

Dt5
l 2

2d D
. ~19!

IV. RESULTS

First, some numerical aspects will be considered. Ne
the simulation model is checked with the case of free dif
sion. Finally, the simulation is used to calculate the spin-e
decay in a restricted geometry. The asymptotic solutions
the motional averaging and the localization regime are c
culated and presented in one master curve. This figure
give an answer to the question: How is the dephasing in
intermediate regime?

A. Numerical aspects

Because of our main interest in moisture transport in
rous building materials, we take water as fluid, for whi
D52.531029 m2/s. Of course our lattice is finite. We ca
simulate all three dimensions with a typical lattice size va
ing between 100 nm and 100mm, cubic. For simulation
reasons, one would describe a free-diffusion situation w
periodic boundary conditions. This means that a particle t
leaves the lattice through a certain boundary, will enter
lattice through the opposite boundary. However, in our sim
lation this is not possible, because the dephasing at, for
stance, the left boundary can be very distinct from t
dephasing at the right boundary. Therefore, we have put
fectly absorbing walls at the boundary of our lattice. So, i
particle hits this wall it will be removed from the simulation
e

re
e

is-
.

FIG. 1. Y component of the simulated particl
distribution at various timest. Solid squares are
points from the simulation. The solid curves a
the result of fitting a Gaussian function to th
data. Att50, all particles are in the middle of the
lattice. The inset shows the mean squared d
placement of the particles as a function of time
6-4
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For the simulations of free diffusion, in the beginning a
particles are put in the middle of the lattice and it is check
that at the echo time only a small fraction of the particles
removed by this mechanism to be sure that it has onl
minor influence on the results. For the simulations of
spherical pore, there is no problem because the particles
never reach the lattice boundary. The pore wall perfectly
flects the particles.

The typical number of lattice points is 10031003100. So
l varies between 1 nm and 1mm, giving a simulation time
stepDt varying between 10210 s and 1024 s. The smallest
echo time that can be measured experimentally by our N
scanners is about 100ms @17#. This time is reached in the
simulations very quickly~for the worst case situation of
cubic 100 nm lattice, in 106 diffusion steps!. The longest
time we consider in our simulations is 10 s, because at
time the normal bulk relaxation time of water will have d
cayed the spin-echo intensity to a level below the noise, p
venting further study of the dephasing behavior. This m
result in a very time consuming simulation~for the worst
case situation up till 1011 diffusion steps!. The number of
particles is typicallyK510 000, which appears to give
signal-to-noise ratio ofS/N5100. For some simulations, th
noise level had to be decreased, in which caseK5106 was
taken.

B. Free diffusion

The particles should perform a Brownian random wa
when they are allowed to move freely in the lattice space.
demonstrate this, all particles are put in the middle of
lattice att50. This is allowed, since there is no interactio
between the particles themselves. The total lattice lengt
set to 3 mm.

The y component of the spatial distribution of the free
moving spins at certain times is shown in Fig. 1. The cur
are fits of a Gaussian function through the data points
various times. As can be seen, the particles spread Gaus
as expected. In the inset of Fig. 1, the mean squared disp
ment in they direction is shown as a function of time. Th
simulated results were found to agree with the mean squ
displacement given by Eq.~18!. Therefore it can be con
cluded that the particles in the lattice space of the simula
behave Brownian. This check was also performed for thx
andz components.

The summation of all spins has to give a FID after the 9
pulse. Also a spin echo has to appear attE . Both effects are
demonstrated in Fig. 2. Att50 the 90° pulse is given and a
t55 ms the 180° pulse is given. The spin echo appe
nicely at tE510 ms. To obtain this picture, also the seco
term at the r.h.s. of Eq.~10! was taken into account, becau
this causes the modulation of both the FID and the spin e
@cf. Eq. ~13!#. The dotted line shows the dephasing due
diffusion predicted from theory that is only valid at spi
echo timetE . If we define the magnetization attE as the
spin-echo intensity, as usual, this intensity can be evalu
as a function of spin-echo time for all kinds of geometr
and magnetic fields.
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There is no bulk relaxation mechanism in this simulati
and there are no walls in the case of free diffusion. Hen
the spins cannot relax by those mechanisms, but they
dephase. As already mentioned in Sec. II, the spin-echo
cay due to dephasing can be described by Eq.~1!.

Figure 3 shows the spin-echo intensity as a function
time for a gradient of 10 T/m. The solid curve in this graph
a fit to Eq. ~1!, which gives a gradient of (9.860.1) T/m.
The small deviation from the gradient strength used in
simulation is caused by the absorbing walls at the bound
of the lattice. As mentioned above, particles that diffuse
of the lattice space are removed from the simulation, wher
in a real experiment particles that diffuse out of the NM
sensitive region can diffuse back after a while and contrib
to the signal.

C. Restricted diffusion

The spins will dephase slower in a restricted geome
than in the case of free diffusion. For restricted diffusion, t

FIG. 2. The solid lines show the simulated transverse magn
zation during a spin-echo experiment in the case of free diffus
The 90° and 180° pulses are given att50 and att55 ms, respec-
tively. The dotted line shows the dephasing due to free diffusio

FIG. 3. The spin-echo intensity as a function of time for a co
stant magnetic-field gradient of 10 T/m. The solid circles are sim
lated spin-echo intensities, the line is a fit of the free-diffusion eq
tion.
6-5
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VALCKENBORG, HUININK, V. D. SANDE, AND KOPINGA PHYSICAL REVIEW E65 021306
diffusion length has to be larger than either the structu
length or the dephasing length. As discussed in Sec. II, th
can be two different situations. If the dephasing length
smaller than the structural length, the particles are in
localization regime. If the dephasing length is larger than
structural length, the particles are in the motional averag
regime. The spin-echo decay in both regimes is monoex
nential, but with a different decay rate@Eq. ~4! and ~5!#.

In Fig. 4 two examples of simulations of the spin-ec
decay in a restricted geometry are given. The first co
sponds to a pore size of 0.3mm and a gradient strength o
10 T/m. The transition from free-diffusion behavior
restricted-diffusion behavior will occur when the diffusio
length becomes of the order of the pore size. The diffus
length is 0.3 mm, at t544 ms, for Brownian motion@cf.
Eq. ~17!#, i.e., before the first spin echo is created. Theref
all the spin echoes in this experiment will correspond to
restricted-diffusion regime. This is in agreement with t
data in Fig. 4, because no transition can be seen and a pe
monoexponential decay is observed. When a larger por
simulated, this transition from free diffusion to restricted d
fusion becomes visible. For example, the second simula
reflects a pore size of 3.3mm and a gradient strength of 0.
T/m. In that case the diffusion length equals the pore siz
t54.4 ms, which is in agreement with the observation
Fig. 4. The decay in the restricted-diffusion regime after t
transition time is monoexponential. A fit of such a decay
the data is shown in the figure by a straight line.

The spin-echo decay has been simulated not only
these two examples, but for various gradient strengths~hence
giving various dephasing lengths! and for various pore sizes
In Fig. 5 the decay rate~resulting from a monoexponential fi
to the data after the transition time! is plotted as a function o
gradient strength. The two straight lines with slope 2 refl
predictions for the motional averaging regime@cf. Eq. ~4!#.
The slope of the fit to the simulation results for the 0.3mm
pore (1.9860.02) is in perfect agreement with the theory@cf.
Eq. ~4!#. One should note, that also the geometrical facto
calculated by Neuman@12# for a spherical pore, yielding a

FIG. 4. The spin-echo intensity as a function of time for a po
size of l S50.3 mm and a uniform gradientg510 T/m; and for a
pore size ofl S53.3 mm and a uniform gradient ofg50.3 T/m.
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factor of 1.31 s21(T/m)22, agrees nicely with the simula
tion results (1.3460.07) s21(T/m)22. The dotted straight
line with slope 2/3 is a guide to the eye for the localizati
regime@cf. Eq. ~5!#. For this regime the exact solution for
spherical pore is unknown. The exact solution for spins c
fined between two parallel plates@13# has a numerical pref-
actor in the exponent of 1.02@cf. Eq. ~5!#, whereas we find
for our spherical pores a prefactor of 1.6.

Reconsider the theory of the two asymptotic regimes.
a pore sizel S50.3 mm, the dephasing length is equal tol S
at a gradient of 252 T/m@Eq. ~3!#. For all gradient strengths
smaller than this value, the dephasing length is larger t
the structural length. Therefore the motional averaging
gime should be applicable for all gradients smaller th
about 250 T/m. This is in agreement with the observation
Fig. 5 that all simulated gradient strengths correspond to
motional averaging regime. For a pore sizel S51 mm, the
dephasing length is also 1mm, at a gradient of 9.3 T/m
Therefore a transition from the motional averaging regi
into the localization regime is expected around this gradi
strength. In Fig. 5 it can be seen, that this transition inde
occurs at about 10 T/m. For pore sizel S53.3 mm, the
dephasing length is also 3.3mm, at a gradient of 0.3 T/m
Therefore, the spin-echo decay should be described by
localization regime for all used gradient strengths, except
simulations for which g50.1 T/m and perhapsg
50.3 T/m as is indeed shown by the corresponding data
Fig. 5. In conclusion, the results of the simulations revea
transition from the motional averaging regime into the loc
ization regime, which is in agreement with the theoretic
transition point atl S5 l g . We elucidate this point later on.

Pore sizes smaller than 0.3mm will be described com-
pletely by the motional averaging regime. Simulating the
pores becomes time consuming, because the decay rat
creases~which implies a longer simulation time! and also the
time step for hopping to another lattice point decreases
can be seen in Eq.~19! ~which implies that more time step

FIG. 5. The simulated spin-echo decay rate due to dephasing
various pore sizes as a function of the gradient field. The solid
dashed lines with slope 2 are the analytical solutions for the m
tional averaging regime. The dotted line with slope 2/3 shows
g2/3 behavior for the localization regime.
6-6
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RANDOM-WALK SIMULATIONS OF NMR DEPHASING . . . PHYSICAL REVIEW E65 021306
are needed for the same simulation time!. Pore sizes large
than 3.3 mm will be described completely by the localiza
tion regime. For these pore sizes, however, the transi
from free diffusion to localization occurs so late in time, th
the spin-echo signal has already decayed to a very low le
Simulating these relaxivities is possible but do not give u
ful results, because in a normal spin-echo experiment
signal-to-noise level will always be on the order of 1000,
best.

The analytical solutions for the motional averaging
gime and the localization regime are only asymptotic so
tions of the Bloch-Torrey equation. The situation in betwe
these asymptotic situations is called the intermediate reg
@14#, in which the spin-echo decay is unknown. The resu
from our simulations show that with increasing gradie
strength, the transition from the motional averaging regi
into the localization regime is smooth. It is clearly visible
Fig. 5 for l S51 mm that the spin-echo decay transform
smoothly from theg2/3 behavior of the localization regim
into theg2 behavior of the motional averaging regime.

Figure 5 suggests that the decay due to dephasing in
localization regime is identical for all pore sizes. This obs
vation is not surprising because the localization regime
characterized by the fact that the spins are already deph
before reaching the pore wall, given a certain constant g
dient. Therefore, the simulated dephasing decay rate ca
scaled by dividing it by the theoretical decay rate of t
localization regime. The decay rate of the motional aver
ing regime, on the other hand, depends on both pore size
dephasing length in a known way@cf. Eq. ~4!#. Therefore the
gradient strength can be scaled by transforming it to the v
able (l S / l g)4. Figure 6 clearly indicates that the scaled dec
due to dephasing as a function of the fourth power of p
size divided by dephasing length gives one master curve
all simulated pore sizesl S and gradient strengthsg, which
are incorporated in the dephasing lengthl g .

The maximum scaled dephasing rate~horizontal line in
Fig. 6! is the dephasing rate corresponding to the localiza
regime. As mentioned above, we are unable to explain

FIG. 6. The scaled decay rate due to dephasing as a functio
the scaled parameter (l S / l g)4.
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numerical prefactor of about 1.6 in terms of known theor
ical models. The slope of the line of the motional averag
regime is in perfect agreement with the theory, as alre
mentioned above. With this scaled figure, the transition fr
the motional averaging regime to the localization regime c
be accurately identified. The dashed lines atl s50.7l g and at
l s51.4l g define this transition area. It should be noticed th
this is exactly around the pointl S5 l g , which is commonly
assumed in literature@14#. It should also be noticed that th
width of the intermediate regime can be understood. Sw
and Sen@13# made the Bloch-Torrey equation dimensionle
and showed that the solution of the resulting different
equation is governed by the value of (l S / l g)3. This differen-
tial equation goes from the one asymptotic solution to
other asymptotic solution if (l S / l g)3 varies over one order o
magnitude. This means thatl S / l g only has to vary over a
factor of aboutA3 10'2, which is in agreement with our ob
servation of the width of the intermediate regime.

V. DISCUSSION AND CONCLUSIONS

It is shown that a numerical simulation of the behavior
the spins in a fluid in multiple identical spherical por
nicely reproduces a FID and a spin echo. It is also shown
the simulated random motion of the spins will give Browni
motion with the correct value of the self-diffusion coeffi
cient. The simulated NMR spin-echo decay due to dephas
in a constant magnetic-field gradient for a large enough
tice space gives the well-known free-diffusion spin-echo
cay function@Eq. ~1!#. The presence of walls in the simula
tion lattice space transforms this free-diffusion result into
restricted-diffusion result, which is known to be monoexp
nential. All these results confirm that our simulation mode
correctly reproducing real NMR behavior and therefore su
able to investigate unknown situations.

For a pore with a typical pore size of 0.3mm, the
dephasing is described by the motional averaging regi
For a pore with a typical pore size of 3.3mm, the dephasing
is described by the localization regime. Both asymptotic s
ations were already predicted in the literature@14#. However,
the intermediate situation was unknown. The simulatio
presented in this paper describe this intermediate regi
Moreover, all simulated decay rates due to dephasing ca
scaled on one master curve, which gives the complete s
tion of the problem of a uniform gradient in a spherical po
From this master curve it is clearly visible that the transiti
from the motional averaging regime into the localization
gime occurs at the gradient strength for which the dephas
length is equal to the pore size (l g5 l S). It can also be con-
cluded that the transition extends over an intermediate
gime for about 0.7, l S / l g,1.4.

In our opinion, the description of clays and fired-cla
bricks may require an extension of the model, introduced
this paper. The solid matrix of the porous material has
susceptibility different from the water or air in the pore
This susceptibility mismatch leads to additional magne
field gradients@18#. The extent to which the susceptibilit
mismatch affects the magnetic field inside the bulk matrix
a pore strongly depends on the geometry of the sample@19#.

of
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Only ellipsoidally shaped objects will have a uniform ma
netic field inside when placed in a homogeneous field. Ot
geometries lead to nonuniform magnetic fields and, con
quently, gradients. Especially sharp corners and wedges
give large local magnetic-field gradients@20#. Therefore, we
are currently simulating other pore geometries and m
complex magnetic-field distributions, i.e., a summation
dipolar fields that are generated by small iron particles. P
liminary results indicate that the effect of these magne
impurities may be very important. Because from the pres
study the intermediate regime in the simple model sys
with a constant gradient is known, it will be easier to inte
en

h
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prete the magnetization decay in more complex situatio
The simulation program can also be used to calculate
transverse relaxation in a restricted geometry. In@5#, the nu-
merical results of the combined effects of relaxation a
dephasing will be presented.
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